Bergens Tidende uses automated journalism for real estate content

By Cecilia Campbell

United Robots

Malmö, Sweden

Connect      

Schibsted’s Bergens Tidende (BT) just went live with some of the most sophisticated robot written real estate text United Robots has ever developed. The strategy behind the publisher’s first foray into automated content is to make it attractive and geographically targeted enough to drive digital subscription sales.

Jan Stian Vold, lead of the BT Project, said: “Like all media houses, BT needs to look for new revenue opportunities. Automated content is such an opportunity if it’s made relevant enough for readers.”

Bergens Tidende worked with United Robots’ developers for several months to fine tune the structure and content of the automated articles the real estate robot produces about house sales in this city on the west coast of Norway. The team pressed the “publish button” at the end of June, and new articles now appear on the BT homes sales vertical every weekday.

If you’re curious what Bergens Tidende’s automated articles look like, do it soon. They are currently behind a five-articles-a-week metered paywall, but once the big launch happens in a few weeks, this content will be exclusively available to paying subscribers.

So, what development work has been done to enrich these automated real estate texts?

The primary data source (from a data warehouse) is the one describing the sale that’s taken place — the “news.” It includes the street address, type of property, price, buyer, seller, and geographic coordinates.

Additionally, a second data source providing information about the property — such as size, number of floors/what floor it’s on, whether there’s an elevator, and what neighbourhood it’s in — are added. All this information makes up the first couple of paragraphs in the text.

The robot also has access to historic data, so it compares the sales price with the most recent previous sale and calculates the increase/decrease.

The headlined primary story of the house sale includes data from two separate sources as well as an image from Google Street View.
The headlined primary story of the house sale includes data from two separate sources as well as an image from Google Street View.

The next subhead in the article covers sales in the neighbourhood: how many and at what price. Here the robot also calculates and includes price per square metre. This section has a list of the top five most expensive homes sold in the city area (i.e. several neighbourhoods combined, such as Bergen West) so far this year.

The final subhead, “Prices in Bergen Now,” is based on a monthly update and compares prices with the previous month as well as the same month last year, including a bar graph comparing prices with other Norwegian cities. This data is synched daily so the updates happen automatically.

The second text section talks about home sales in the neighbourhood and lists the top five most expensive ones this year.
The second text section talks about home sales in the neighbourhood and lists the top five most expensive ones this year.

The image of the property sold comes from Google Street View (United Robots has a global agreement with Google). A new feature for BT is the frame from automatically generated Google Earth “drone” videos. These frames have the property pinpointed and labelled.

The home sales text is accompanied by a frame from an automatically generated Google Earth drone video with a pinned label for the property in question.
The home sales text is accompanied by a frame from an automatically generated Google Earth drone video with a pinned label for the property in question.

Geographic targeting drives relevance for readers

According to Vold, the relevance the real estate content drives is twofold:

One aspect is the depth of information generated. “Information about trends in the real estate market is key for anyone owning or aspiring to own a home,” he said. “By combining specific information about individual sales with general trends in the local region, BT provides readers with a better overview of the market, which means we put them in a better position to make educated choices in that market.”

The other relevant piece relates to geography. “In the first version, everyone will see the same articles,” Vold said. “However, we have a well-developed tag structure, which means readers will get a good overview of their neighbourhood and street. In coming versions we’ll add geographic search and targeting. And as we put this content behind the paywall, we hope our real estate bot will contribute to recruiting new subscribers.”

For BT, deploying robots is not only about the additional content generated. Vold said, “By automating information generation, we free up journalists’ time. And that can be used to dig deeper about the real estate market, as well as on other relevant aspects of society. Robot journalism is not about replacing human journalists but about making it possible for them to do an even better job.”

About Cecilia Campbell

By continuing to browse or by clicking ‘I ACCEPT,’ you agree to the storing of cookies on your device to enhance your site experience. To learn more about how we use cookies, please see our privacy policy.
x

I ACCEPT